Search results for " nilpotent Lie algebras"

showing 1 items of 1 documents

A note on the Schur multiplier of a nilpotent Lie algebra

2011

For a nilpotent Lie algebra $L$ of dimension $n$ and dim$(L^2)=m$, we find the upper bound dim$(M(L))\leq {1/2}(n+m-2)(n-m-1)+1$, where $M(L)$ denotes the Schur multiplier of $L$. In case $m=1$ the equality holds if and only if $L\cong H(1)\oplus A$, where $A$ is an abelian Lie algebra of dimension $n-3$ and H(1) is the Heisenberg algebra of dimension 3.

Pure mathematicsAlgebra and Number TheoryDimension (graph theory)Schur multiplier nilpotent Lie algebrasMathematics - Rings and AlgebrasUpper and lower boundsNilpotent Lie algebraSettore MAT/02 - Algebra17B30 17B60 17B99Rings and Algebras (math.RA)Lie algebraFOS: MathematicsSettore MAT/03 - GeometriaAlgebra over a fieldAbelian groupMathematicsSchur multiplier
researchProduct